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Abstract  In this paper an attempt is made to study the Einstein relation for the diffusivity mobility 
ratio (DMR) in non-parabolic materials having tetragonal band-structure by deriving the 
generalized electron energy spectrum incorporating the anisotropies of the energy band constants 
within the frame work of k.p. formalism. It is found, taking degenerate 2CdGeAsn − as an 
example, that the above ratio oscillates in a periodic manner with the orientation of the magnetic 
field with respect to the c-axis. The ratio shows an oscillatory magnetic field dependence, as 
expected since the origin of the oscillations in the DMR is same as that of the Shuvnikov-de-Hass 
(SdH) oscillations and also increases with increasing electron concentration as expected in 
degenerate semiconductors. The corresponding well known results for isotropic two-band Kane 
model, both in the presence and absence of magnetic quantization, are also obtained from the 
expression derived. Also an experimental method of determining DMR in degenerate 
semiconductors is suggested for materials having arbitrary dispersion laws. 
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INTRODUCTION 

 
   The Einstein relation for the diffusivity-mobility ratio 
of the carriers in semiconductors (DMR) is known to be 
very useful[1-2] , since the diffusion constant can be 
obtained from the ratio by knowing the values of the 
experimentally determined mobility. In addition, the 
DMR is more accurate than any of the individual 
relations for the diffusivity or the mobility which are 
considered to be the two most widely used properties of 
carrier transport in electronic devices. Since the 
performance of semiconductor devices at the device 
terminals and the speed of operation of modern 
switching devices are significantly influenced by the 
degree of carrier degeneracy, the simplest way of 
analyzing them would be to use the expression for the 
DMR which, in turn, enables us to express the above 
features of  the devices made of degenerate materials in 
terms of carrier concentration[3-4]. The connection of the 
DMR with the velocity auto-correlation function[5] and 
the relation of the same ratio with the screening length[6] 
have been studied. The classical value of the DMR is 
equal to ( )e/TkB ( where Bk , T and e  are the 
Boltzman constant, temperature and carrier charge 
respectively) and this relation is the well-known 
Einstein relation[8]. This relation is valid both for 
electrons and holes. In this conventional form, the 
relation holds only for non-degenerate materials 
although its validity has been suggested erroneously for 
degenerate compounds[2]. It is well-known from the 
fundamental work of Landsberg[7] that the Einstein 

relation, in electronic materials is essentially determined 
by the respective energy band structures. It has, 
therefore, different values in various degenerate 
materials and varies significantly with electron 
concentration, with the magnitude of the quantizing 
magnetic field, with quantizing electric field as in 
inversion layers, with size quantization as in ultrathin 
films, with quantum wires, etc. The nature of some of 
these variations  have been studied in literature[6]. 
Nevertheless there still remain scopes in the 
investigations made while the interest for the further 
researches of the DMR in tetragonal semiconductors 
having other band structures under various physical 
conditions is becoming increasingly important. With a 
view to exploring some of these aspects, an attempt is 
made to study the DMR in non-parabolic materials 
having tetragonal band-structure under quantizing 
magnetic field. 
 
   It is worth remarking that the effects of a quantizing 
magnetic field on the band structures of non-parabolic 
materials are more striking than that of the parabolic 
one and are easily observed in experiments. Under 
magnetic quantization, the general characteristics of the 
band structure remain the same, but in each band the 
energy of the electron corresponding to the velocity 
transverse to the magnetic field becomes discrete due to 
quantization of the area of the k-space in the direction 
perpendicular to the direction of application of the 
quantizing magnetic field. This quantum nature of 
Landau levels leads to a host of interesting transport 
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phenomena. Also the magneto DMR in the tetragonal 
semiconductors is discussed. We have suggested an 
experimental method of determining the DMR in 
degenerate materials having arbitrary dispersion laws. 
We have plotted the DMRs as functions of various 
physical variables taking 23 AsnCd  as an example. 
 

THEORETICAL BACKGROUND  
 
Formulation Of DMR In Bulk Specimens Of 
Tetragonal Semiconductors : 

v
2

II
3 BA and ternary chalcopyrite semiconductors are 

called tetragonal semiconductors since they have the 
tetragonal crystal structure[10]. These materials are being 
increasingly used as non-linear optical elements[11] and 
light emitting diodes[12]. Rowe and Shay[13] have 
demonstrated that the quasi-cubic model can[14] be  used 
to explain the observed splitting and symmetry 
properties of the conduction and valence bands at the 
zone center of k-space of the aforementioned 
semiconductors. The s-like conduction band is singly 
degenerate and p-like valence band is triply degenerate. 
The latter splits into three subbands because of spin-
orbit and crystal field interactions. The largest 
contribution of the crystal field parameter occurs from 
the presence of the non-cubic potential[15]. Incorporating 
the anisotropic crystal potential to the Hamiltonian, 
Bodnar[16] proposed a dispersion relation of the 
conduction electrons in the same semiconductor by 
using the assumption of an isotropic  spin-orbit splitting 
parameter. It would, therefore, be of much interest to 
investigate the DMR in these materials by generalizing 
the above model within the framework of 

p.k !!
formalism. This is done, in what follows by taking 

23 AsCdn −  as an example of tetragonal semiconductors 
which is being increasing used in Hall pick-ups and 
thermal detectors. 
 

   The form of p.k !!
matrix for tetragonal 

semiconductors can be expressed as  
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in which gE is the energy band gap, P and ⊥P  the 

momentum matrix elements parallel and perpendicular 
to the crystal axis respectively. δ is the crystal field 
splitting parameter, ∆  and 

⊥
∆  are the spin-orbit 

splitting parameters  along and perpendicular to the C-
axis respectively and ii = . Thus, neglecting the 
contribution of the higher bands and the free electron 
energy, the diagonalisation of the above matrix leads to 
the dispersion relation of the conduction electron in bulk 
specimens of tetragonal semiconductors as  
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E is the energy as counted from the edge of the 
conduction band in the vertically upward direction in 
the absence of any quantization, 
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π2/h2 =" , h is the Planck’s constant and m and 

⊥m are the longitudinal and transverse effective electron 
masses at the edge of the conduction band, respectively. 
The use of equation (2) leads to the expression of the 
density-of-states function as  

( ) ( ) ( ) ( )[ ]EVdE/d2/2ED 3
0 π=  

( ) ( )EP3 12 −
= π    ……(3) 
where V(E) is the volume of k-space as formed by 
equation (2), 
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Combining equation (3) with the Fermi-Dirac 
occupation probability factor and using the generalized 
sommerfield’s lemma[5], the electron concentration can 
be written as  

( ) ( ) ( )[ ]FF
12

0 ENEM3n +=
−π  ……(4) 

The DMR in the present case can, in general, be written 
as [7] 

( )( ) ( )F00 E/n/ne/1/D ∂∂=µ  ……(5) 
Thus combining the equations (3) and (4) we get 
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where the primes indicate the differentiation with 
respect to FE . 
Formulation Of DMR In Tetragonal Semiconductors 
Under Magnetic Quatization 
The modified electron energy spectrum in tetragonal 
semiconductors under arbitrary magnetic  quatization 
can be written as  
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( ) ( ) ( ) ( ) ( ) θθθ 22 SinEBCosEA/EBEA,Ea += . 
n(=0,1,2,…..) is the Landau quantum number , 

( )θθ SinkCoskk xzz +=′  is the direction of application 
of quantizing magnetic field B which makes an angle θ  
with xk axis and lies in the zxkk plane. 
Thus combining the appropriate equations using the 
generalized Sommerfield’s lemma, the electron 
concentration in tetragonal semiconductors can be 
expressed as 

( )( ) ( ) ( )[ ]∑
=

+=
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     ……(8) 
where FBE  is the Fermi energy in the presence of 
magnetic quantization as measured from the edge of the 
conduction band in the absence of any quantization and 
the functions ( )θ,E,ng FB1 and ( )θ,E,ng FB2 are 
functions of θ,E,n FB . Combining equations (8) and 
(5), the magneto DMR in tetragonal semiconductors can 
be written as 
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where the primes denote the differentiation with respect 
to Fermi energy. 
 
Special Cases 
(a) under the substitution a 0=δ , ∆∆∆ == ⊥  and 

∗∗
⊥

∗ == mmm equation (7) assumes the form, 
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where *
0 m/Be=ω , the function ( )Eγ has been 

defined as 
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the well-known magneto three band Kane model. For 
this model the equations (8) and (9) get simplified as  
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and 
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where ( )FB1 E,nG and ( )FB2 E,nG are functions of  

FBE,n . 
In the absence of spin and broadening, the expressions 
of 0n and DMR for the two band Kane model can, 
respectively, be expressed under the assumption 

1EFB <<α  as 
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Suggestion For Experimental Determination Of 
DMR For Degenerate Semiconductors Having 
Arbitrary Dispersion Laws 
The thermoelectric power of the electrons in 
semiconductors in the presence of a very large magnetic 
field is independent of scattering mechanism and can be 
written as[17] 

( )( )00 ne/SG =    ……(17) 

where 0S is the entropy. The equation (17) can be 
written under the condition of carrier degeneracy as 

( ) ( )( )22
B

2 eG3TkG π=   ……(18) 
Thus we can determine the DMR by knowing G which 
is an experimentally measurable quantity[18,19]. 
 

RESULTS AND DISCUSSIONS 
 
   Using 23 AsCdn − as an example of tetragonal 
semiconductors together with the parameters[18]. 

0
* m03.3m = , 0

* m04.0m =⊥ , eV095.0Eg = , 

eV085.0=δ , eV24.0=∆ , eV29.0=⊥∆ and 

T=4.2k. Using the appropriate equations and together 
with K3TD = , K2.4T = , B=1 Tesla and 

322
0 m102.2n −×= . The plots of the normalized DMR 

have been shown as function of 1/B and 0n in figures 1 
and 2 respectively. 
 
   It appears from figure 2 that the DMR oscillates with 
1/B due to SdH effect. The band anisotropies enhance 
the numerical value of the DMR in 23 AsCdn − as 
compared to other types of band models. At extremely 
large values of the quantizing magnetic field, the 
condition for the quantum limit (n=0) will be reached 
when the DMR will be found to decrease with 
increasing magnetic field. The DMR increases in an 
oscillatory way with increasing electron concentration 
for all the models. Our calculation is only valid under 
the conditions of carrier degeneracy since under non-
degenerate conditions, the DMR varies with only 
temperature in a liner manner. The DMR will in 
general, be anisotropic in the presence of magnetic 
quantization. It appears that for investigating the DMR 
under magnetic quantization, we have determined the 
magnetic field directional element of the corresponding 
tensor of DMR as a function B. Thus we note that the 
DMR as defined here refers to the direction of the 
application of the quantizing magnetic field. 
 
   The complicated variations of the DMR with respect 
to any physical variable is determined by the carrier 
statistics. The natures of variations are apparent from 
the figures. Since G decreases with increasing 0n  in an 
oscillatory way, therefore the DMR will increase with 
electron concentration in an increasing manner as 
apparent from equation (18). Finally we may note that 
this statement is the indirect test of our simplified 
theoretical analysis. 
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Fig 1 : Plot of the normalized magneto DMR versus 
0n in 23 AsCdn − in accordance with (a) proposed 

dispersion law (b) three-band Kane model (c) two-
band Kane model (d) parabolic energy band 

( )Tesla5.1B,750 ==θ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2 : Plot of the normalized magneto DMR versus 

1/B in 23 AsCdn − in accordance with (a) the 
generalized dispersion law (b) three-band Kane 

model (c) two-band Kane model and (d) parabolic 
model 075=θ , 323

o m10n −= . 
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